Monday, August 15, 2016

Definitud en lógica analítica de Solomon Feferman (Descanse en paz 1928-2016)

Hace unos días murió uno de los grandes en Lógica, el cual en mis aires amateur de Lógico analítico me agradaba mucho entender sus ideas, él fue Solomon Feferman, alumno de Alfred Tarski, que a sus 87 años muere pero deja una nueva manera de observar la matemática que nos dejó Gödel después de demostrar sus teoremas de incompletud que rompieron la supuesta "perfección" de la matemática y la sumergieron en un objeto "imperfecto" lleno de hoyos y preguntas sin respuesta que son los indecidibles en el lenguaje de la teoría de conjuntos que gobierna a toda la matemática, eso lo explico y demuestro en mi blog aquí Incompletud de Gödel

Hay nuevas cosas relacionadas hoy en día con un problema en lógica y conjuntos que se creía resuelto, más específico con la hipótesis del continuo, el cual es un problema en matemáticas que es indecidible, es decir no se puede demostrar con el sistema axiomático ZFC que sea verdadero o que sea falso, uno más de los hoyos en la matemática bajo este sistema axiomático que todos usamos que fue demostrado por Gödel en su teorema de incompletud que ahora es una herramienta formal que gobierna a la matemática.

Sólo para recordar rápido un ejemplo en ZF (sin C) de la hipótesis del continuo es

Sí ℵ = |ℕ| y ℑ=|ℝ| son los infinitos que corresponden a los tamaños de los conjuntos de números naturales y reales respectivamente (los cuales es bien sabido que no son iguales ya que por el teorema de Cantor Schroeder Bernstein no están en biyección y uno se puede construir como el conjunto potencia del otro) entonces NO existe un X tal que ℵ<|X|<ℑ.

Es decir, no hay un infinito estrictamente intermedio.

Esto lo explico en mi blog con más detalle aquí Infinitos grandes y chicos

En 1940 Gödel demostró que la hipótesis del continuo no era falsa.

En 1964 Cohen demuestra que la hipótesis del continuo no es verdadera.

Por lo tanto es indecidible. Es decir está demostrado usando teoría de modelos que no se puede demostrar que la hipótesis del continuo es demostrable falsa o verdadera.

Pero hay más

En 2011 Solomon Feferman encontró un argumento filosóficamente complejo en lógica analítica, en este paper se explica su teoría (Feferman) que propone una nueva teoría de "Definitud" usando un sub sistema semi intuicionista del sistema de teoría de conjuntos que usamos generalmente, el cuál es ZF, que acepte lógica clásica (donde toda proposición P tiene un valor de verdad) para operadores acotados (ej en el universo de los números reales. ∀x>0", "∃y<0", "∀x ∊ ℝ", para todo x>0, Existe y<0 , para todo x real ), y para operadores no acotados que uses lógica intuicionista (donde toda proposición no necesariamente tienen asignado un valor de verdad pero tiene una noción de pruebabilidad constructivista... Sí "pruebabilidad", es decir que se puede construir un camino lógico en el sistema axiomático de una teoría que conlleva a una demostración de su veracidad o falsedad) (ej. en teoría de conjuntos de un operador no acotado. ∀A ∅⊆A).
Feferman define que una proposición P es matemáticamente definida si el subsistema semi intuicionista puede probar P∨¬P (Es decir que existe una demostración para la proposición P o su negación).
Sólomon Feferman conjetura que la hipótesis del continuo NO está definida bajo este concepto de definitud por lo que la hipótesis del continuo está definida de manera "incompleta" y no tiene un valor de verdad. Koellner el mismo año propone que la teoría de conjuntos vista desde un sistema multiverso podría definir la hipótesis del continuo bajo la noción de Feferman.

Un documento de Hamkins define y usa los "Set Theoretic Multiverses" pero no ahondaré en ello ya que estoy en proceso de comprenderlo pero para el curioso que sepa de ultrafiltros aquí lo tiene: The Set theoretic multiverse

En este documento se demuestra la conjetura de Feferman.
https://arxiv.org/pdf/1405.4481.pdf



Solomon Feferman 1928-2016

No comments: