Wednesday, July 23, 2014

Geometría p-ádica, completación de racionales y estructura de campo

¿Cómo podemos llegar a los números reales desde los números racionales?

Esta estructura es muy importante para estudiar muchos teoremas de geometría algebraica, y sirve como un ejemplo interesante ajeno a los campos usuales, todo estudiante de posgrado orientado a álgebra creo que debe conocerlos, aquí pongo una mini-introducción sólo para que te adentres más.


Tenemos que los números racionales son los cocientes de enteros, es decir:

$latex \mathbb{Q}=\Big \lbrace \frac{a}{b} : a,b\in\mathbb{Z}, b\neq 0 \Big \rbrace$

Ya sabemos como sumar y multiplicar fracciones, y sabemos que cada fracción tiene un inverso (excepto el 0) es decir, $latex (\mathbb{Q},+.\times)$ forma un campo.


Para entender los números p-ádicos necesitamos entender valores absolutos

Valores absolutos

Definición: Sea $latex \mathbb{K}$ un campo y $latex \mathbb{Q}_{+}=\big \lbrace x\in \mathbb{Q} : x\geq 0\big \rbrace$, entonces un valor absoluto en $latex \mathbb{K}$ es una función:

$latex \mid \cdot \mid:\mathbb{K}\rightarrow \mathbb{Q}_{+}$

Que satisface lo siguiente:


* $latex \mid x \mid = 0 \Leftrightarrow x=0$
* $latex \mid xy \mid = \mid x \mid \mid y \mid$
* $latex \mid x+y\mid \leq \mid x \mid + \mid y \mid$   (Desigualdad del triángulo)

Ejemplo usual:

Un valor absoluto para $latex \mathbb{Q}$ es:

$latex \mid \cdot \mid:\mathbb{Q}\rightarrow \mathbb{Q}_{+}$

$latex \mid x \mid =\begin{cases} \enspace x: & x\geq 0 \\ -x: & x < 0 \end{cases}$


Es fácil verificar que satisface las condiciones anteriores.


Ahora démosle más estructura al espacio, viendo cómo podemos comparar elementos.


Espacios Métricos

Decimos que una métrica es una función de distancia, es decir , si $latex \mathbb{X}$ es un conjunto entonces una métrica sobre $latex \mathbb{X}$ es una función:


$latex \delta:\mathbb{X}\times \mathbb{X} \rightarrow \mathbb{Q}_{+}$

Que satisface lo siguiente:

*$latex \delta(x,y)\geq 0$
*$latex \delta(x,y)=\delta(y,x)$
*$latex \delta(x,y)+\delta(y,z)\geq \delta(z,y)$ (desigualdad del triángulo)


Si se fijan hasta aquí, tenemos que si son observadores, $latex \mathbb{Q}$ forma un espacio métrico con la distancia usual , es decir:

$latex (\mathbb{Q},\mid \cdot \mid)$ es un espacio métrico , donde la métrica $latex \delta$ está definida usualmente como:

$latex \delta:\mathbb{Q}\times \mathbb{Q}\rightarrow \mathbb{Q}_{+}$
$latex \delta(x,y)=\mid x-y\mid$

Es decir la distancia que separa a los puntos $latex x,y\in \mathbb{Q}$

Para poder completar todos los huecos de $latex \mathbb{Q}$ necesitamos saber lo que son las sucesiones de Cauchy


Sucesiones de Cauchy


Una sucesión de Cauchy en un espacio métrico $latex \mathbb{X}$ es una sucesión de elementos $latex x_1,x_2,... \in \mathbb{X}$ de tal manera que cada uno de los elementos se van volviendo más cercanos conforme esta sucesión crece.

Es decir

$latex x_1,x_2,x_3,...$  es una sucesión de Cauchy si para todo número real positivo $latex \epsilon$ existe un entero $latex N$ de tal que para todos los números $latex n,m\in \mathbb{N}$ con $latex n,m > N$

$latex \delta(x_m,x_n)=\mid x_m -x_n\mid < \epsilon$



Esto quiere decir que siempre que se te ocurra cualquier real $latex \epsilon > 0$ por más chiquito que quieras, siempre podrás encontrar un índice $latex N$  donde todos los índices $latex n,m$ mayores que $latex N$ están a distancia menor que $latex \epsilon$


Puedes visualizarlo así... si se fijan los elementos $latex x_i$ se van juntando cada vez más y aunque escoja $latex \epsilon = \frac{1}{10^{100^{100}}}$ siempre sucederá que existe una $latex N$ que todos los elementos con índice mayor a $latex N$ están a distancia menor que $latex \epsilon$, entonces si una sucesión cumple esto, decimos que es de Cauchy, un ejemplo es $latex \Big \lbrace \frac{1}{n} \Big \rbrace_{n=1}^{\infty}$


$latex \mathbb{X}$




Ahora para juntar todo esto , veamos que es un espacio métrico completo.



Definición: Decimos que un espacio métrico $latex (\mathbb{X},d)$ es completo si toda sucesión de Cauchy en $latex (\mathbb{X},d)$ converge EN $latex \mathbb{X}$


Antiejemplos:

Es decir , por ejemplo si $latex \mathbb{X}=(0,1]$  vemos que la sucesión anterior $latex \Big \lbrace \frac{1}{n} \Big \rbrace_{n=1}^{\infty}$ converge a $latex 0\notin \mathbb{X}$ por lo que en este caso $latex \mathbb{X}$ no es completo.


Ahora... también tenemos que los números racionales con la métrica usual tampoco son completos es decir $latex (\mathbb{Q},\mid \cdot \mid)$

Es construir una sucesión de Cauchy en $latex \mathbb{Q}$ que no converja, por ejemplo.


$latex \Big \lbrace 3,3.1,3.14,3.141,3.1415,3.14159,3.14159295,...\Big \rbrace$


Esta claramente es una sucesión de números racionales que converge a $latex \pi \notin \mathbb{Q}$

Por lo que $latex \mathbb{Q}$ no es completo con la métrica usual


Ahora, Si un espacio no es completo, podemos completarlo agregando todos los límites de sucesiones de Cauchy de éste, y pueden probar que el completar un campo (en este caso $latex \mathbb{Q}$) el resultado les da otro campo (en este caso $latex \mathbb{R}$)


Resumen

Si quieres obtener $latex \mathbb{R}$ lo que necesitas es a $latex \mathbb{Q}$ , un valor absoluto en éste $latex \mid \cdot \mid$ , una métrica $latex \delta$ y todas las sucesiones de Cauchy en $latex \mathbb{Q}$ con respecto $latex \delta$


Otros Valores Absolutos  (p-ádicos)

Hasta ahora todo esto es lo usual y aburrido, la función de valor absoluto ya la conocemos perfectamente, lo que queremos hacer es usar otras funciones de valor absoluto y ver cómo se comportan estos espacios bajo una nueva métrica.


Fijemos un número primo $latex p$ , definiremos un valor absoluto asociado a $latex p$ en $latex \mathbb{Q}$

Sea $latex \alpha \in \mathbb{Q}^{\times}$ entonces tenemos que existen $latex g,h$ primos relativos tal que:

$latex \alpha = p^{n}\frac{g}{h}$

Es decir, todo número racional podemos verlo como múltiplo de $latex p^n$  donde $latex p$ no divide a ninguno de los $latex g,h$ , es decir todos son primos relativos.

Esto es fácil observarlo y demostrarlo, ahora vemos ejemplos , pero definimos el valor absoluto p-ádico para $latex \alpha \in \mathbb{Q}^{\times}$ como:

$latex \mid \alpha \mid_{p}=\mid p^{n}\frac{g}{h}\mid_p = p^{-n}$

Este es un valor absoluto no trivial y cumple todas las reglas de valor absoluto que definimos anteriormente con las leyes de los exponentes, hay que definir $latex \mid 0 \mid_p=0$ y hay que notar que el conjunto de valores absolutos es discreto ya que cae en el conjunto $latex \lbrace p^n : n\in \mathbb{Z}\rbrace \cup \lbrace 0 \rbrace$

Ejemplo:

Consideremos $latex \alpha = \frac{140}{297}=2^{2}\cdot 5 \cdot 7 \cdot 3^{-3} \cdot 11^{-1}$

Entonces:

$latex \mid \alpha \mid_2 = \frac{1}{4}$
$latex \mid \alpha \mid_3 = 27$
$latex \mid \alpha \mid_5 = \frac{1}{5}$
$latex \mid \alpha \mid_7 = \frac{1}{7}$
$latex \mid \alpha \mid_{11} = 11$
$latex \mid \alpha \mid_{13} = 1$


Métrica p-ádica en $latex \mathbb{Q}$

Naturalmente tenemos que la métrica p-ádica en los racionales definida como


$latex \delta_p:\mathbb{Q}\times\mathbb{Q} \rightarrow \mathbb{Q}_{+}$

está definida como

$latex \delta_p(x,y)=\mid x-y\mid_p$


Ejemplo contraintuitivo

Aquí las cosas no son tan intuitivas porque podemos ver que por ejemplo si $latex p=7$ $latex 28814$ y $latex 2$ están más cercanos que $latex 3$ y $latex 2$ ya que


$latex \delta_7(28814,2)=\mid 28812\mid_7 = \mid 2^2\times 3 \times 7^4\mid_7 = 7^{-4}=\frac{1}{2401}$

$latex \delta_7(3,2)=\mid 1 \mid_7 = \mid 7^0 \mid_7 = 7^0 = 1$

como $latex 1 > \frac{1}{2401}$ tenemos que $latex 3$ está más alejado del $latex 2$ que $latex 28814$



Completación de $latex \mathbb{Q}$ con la métrica p-ádica


$latex \mathbb{Q}$ no es completo con respecto a esta métrica, veamos un ejemplo

si $latex p=5$

$latex \displaystyle \sum_{n=0}^{\infty}{ 5^n}$

No es un elemento de $latex \mathbb{Q}$ pero ...

la sucesión:

$latex \lbrace 1,1+5,1+5+5^2, 1+5+5^2+5^3,...\rbrace = \lbrace 1,6,31,156\rbrace$

Es una sucesión de Cauchy con la métrica 5-ádica , esta sucesión con la métrica usual NO converge, pero con la métrica 5-ádica sí, de hecho las distancias van siendo $latex 1,\frac{1}{2},\frac{1}{4},\frac{1}{8}...$ .


Entonces para cada primo $latex p$ hay una completación de $latex \mathbb{Q}$ con respecto a su métrica p-ádica asociada

Entonces como sabemos que la completación del campo $latex \mathbb{Q}$ también será un campo.

y este objeto le llamamos campo de los números p-ádicos y lo denotamos como:

$latex \mathbb{Q}_p$

para algún primo $latex p$.

Representación de los números p-ádicos

Tenemos que todo número $latex x\in \mathbb{Q}_p$ puede ser representado como la serie de potencias:


$latex x_{-m}p^{-m}+x_{-m+1}p^{-m+1}+...+x_0+x_1p+x_2p^2+x_3p^3+...$


Esta representación es única cuando $latex x_i \in \mathbb{Z}/p\mathbb{Z}$ es decir , si $latex x_i$ está módulo $latex p$

La colección de las $latex \lbrace x_i \rbrace$ son los dígitos p-ádicos y la notación para escribirlos es de izquierda a derecha

$latex ...x_{3}x_{2}x_{1}x_{0} . x_{-1}x_{-2}...x_{-m+1}x_{-m}$


Geometría de $latex \mathbb{Q}_p$



Para finalizar vamos a ver cómo se ven las bolas de radio $latex r$ con centro en $latex a$ en $latex \mathbb{Q}_p$

es decir , queremos analizar estos objetos:

$latex B(a,r) = \lbrace x\in \mathbb{Q}_p : \mid a-x\mid_p < r\rbrace$


Como $latex r\in \lbrace p^n : n\in \mathbb{Z}$ si $latex p=3$ en $latex \mathbb{Q}_3$



Donde el círculo más grande tiene $latex r=1$ y los 3 circulitos que siguen tienen $latex r=1/3$ y así $latex r=1/3^n$

Pero si ponemos un microscopio, lo que veremos es:



que es como un arbol ternario.

Espero les haya servido, estos aparte de ser divertidos son bellos, ahora podríamos hablar en el futuro a detalle de topología con esto.


Eduardo Ruíz Duarte (beck)
twitter: @toorandom

1 comment:

Oscar Casas said...

Hola, creo que en la parte que afirmas que la $\sum_0^\infty5^n$ no es un elemento de $Q$, está errada, deberías decir con respecto a qué norma no pertenece, en este caso no pertenece con respecto a la norma usual, pero con respecto a la 5-ádica sin, ya que esta serie converge a 1/5 en la norma 5-ádica.

Saludos